Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Oniris

Home page

RobustInfer

Combine and estimate: towards a reduction in data complexity for a better calibration of large-scale dynamic epidemiological models   (2021–2023)

RobustInfer
This project aims to better understand how to use available data for complex epidemiological systems on a large scale (region, territory) in order to parameterise the mechanistic models representing them. One of the objectives is to provide elements of understanding on how to build criteria (summary statistics) for summarising observational data, and to mobilise them in inference approaches adapted to the specificities of these systems (large scale, variability of dynamics, partial observation, etc.). This will make it possible to improve the integration of empirical information into mechanistic models and guarantee more reliable and realistic models, thus more useful for prioritising control strategies.

The control of infectious animal diseases is a major challenge for sustainable animal husbandry, to limit public health risks (zoonoses), and to improve animal health and welfare. Better understanding and anticipation of the spread of diseases at territorial level strengthens decision-making capacities in the face of current and future threats.

As observed during recent health crises (ASF, covid-19), mechanistic models are powerful tools to describe spatio-temporal infection dynamics. They allow consideration of large scales, which are essential in a context of intensified and globalised animal trade. They help to support the decisions of health managers and public decision-makers, in particular by guiding surveillance efforts and the deployment of control interventions. However, if these models are not properly calibrated, the quality of predictions, and therefore their relevance, can be considerably reduced. Thus, they need to be fed with observational data, the collection of which becomes easier and more extensive. However, relevant procedures are missing to connect such models to data, especially for large and partially observed systems.

This project aims to better understand how to use available data for complex epidemiological systems on a large scale (region, territory) in order to parameterise the mechanistic models representing them. One of the objectives is to provide elements of understanding on how to build criteria (summary statistics) for summarising observational data, and to mobilise them in inference approaches adapted to the specificities of these systems (large scale, variability of dynamics, partial observation, etc.). This will make it possible to improve the integration of empirical information into mechanistic models and guarantee more reliable and realistic models, thus more useful for prioritising control strategies.