Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Oniris

Home page

Bhagat Lal Dutta

Thesis Dutta Bhagat Lal
Spatio-temporal modelling of pathogen spread in a bovine metapopulation: application to Bovine Viral Diarrhoea Virus (BVDV)

Abstract :

Bovine Viral Diarrhoea Virus (BVDV) infection poses serious socio-economic concerns to cattle farms. The objective of this thesis was to understand, by a modelling approach, the propagation of BVDV between farms at a regional scale, interacting via animal movements and neighbouring relationships, thus paving the way for the evaluation of control strategies. In the first part, the network of cattle movements in France (2005-2009) was analysed to evaluate its temporal evolution influencing the underlying capacity of spreading pathogens via animal exchanges between farms and to explore the importance of its regional and breed-related specificities. Topological properties of this network were found to be quite stable over time. The relative vulnerability of beef and dairy sub-networks depended on if aggregated or dynamical views of these networks were considered. In the second part, a multilevel stochastic metapopulation model of BVDV spread in dairy herds was developed and efficiently implemented, coupling local herd population and pathogen spreading dynamics and possible inter-herd transmission of the pathogen through animal exchanges and neighbouring relationships. Animal movement data between farms and geo-location based neighbourhoods were used to simulate BVDV transmission in Finistère, a dominantly dairy department of Western France. The simulations spanning over 10 years showed that cattle movements played the main role in the transmission of BVDV at a regional scale. In agreement with field observations, it was also found that, on average, 6 to 11% of farms were infected. This modelling approach will be further used to test the control programs in-silico.

Key words :

BVDV, metapopulation model, spatio-temporal modelling, model coupling, network analysis, dynamic networks, neighbourhood, intensive simulations