En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Logo Principal Institut Agro Rennes-Angers Université d'Angers   IRHS

IRHS

Publications

Articles

SA-E14-1 Chapeau-Blondeau, F., & Belin, E. (2020). Fourier-transform quantum phase estimation with quantum phase noise. Signal Processing, 170, 107441.

SA-E14-2 Leclerc, P., Ray, C., Mahieu-Williame, L., Alston, L., Frindel, C., Brevet, P. F. & Rousseau, D. (2020). Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy. Scientific reports, 10(1), 1-9.

SA-E14-3 Méline, V., Brin, C., Lebreton, G., Ledroit, L., Sochard, D., Hunault, G., ... & Belin, E. (2020). A Computation Method Based on the Combination of Chlorophyll Fluorescence Parameters to Improve the Discrimination of Visually Similar Phenotypes Induced by Bacterial Virulence Factors. Frontiers in Plant Science, 11, 213.

SA-E14-4 Desgeorges, T., Liot, S., Lyon, S., Bouviere, J., Kemmel, A., Trignol, A., Rousseau D, & Chazaud, B. (2019). Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. Skeletal muscle, 9(1), 2.

SA-E14-5 Rasti, P., Wolf, C., Dorez, H., Sablong, R., Moussata, D., Samiei, S., & Rousseau, D. (2019). Machine Learning-Based Classification of the Health State of Mice Colon in Cancer Study from Confocal Laser Endomicroscopy. Scientific Reports, 9(1), 1-11.

SA-E14-6  Rasti, P., Ahmad, A., Samiei, S., Belin, E., & Rousseau, D. (2019). Supervised image classification by scattering transform with application to weed detection in culture crops of high density. Remote Sensing, 11(3), 249.

SA-E14-7 ElMasry, G., Mandour, N., Wagner, M. H., Demilly, D., Verdier, J., Belin, E., & Rousseau, D. (2019). Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant methods, 15(1), 24.

SA-E14-8 Gillard, N., Belin, É., & Chapeau-Blondeau, F. (2019). Stochastic resonance with unital quantum noise. Fluctuation and Noise Letters, 18(03), 1950015.

SA-E14-9 Debs, N., Rasti, P., Victor, L., Cho, T. H., Frindel, C., & Rousseau, D. (2020). Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke. Computers in Biology and Medicine, 116, 103579.

SA-E14-10 Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., & Rousseau, D. (2019). Novel data augmentation strategies to boost supervised segmentation of plant disease. Computers and Electronics in Agriculture, 165, 104967.

SA-E14-11 Samiei, S., Rasti, P., Daniel, H., Belin, E., Richard, P., & Rousseau, D. (2018). Toward a Computer Vision Perspective on the Visual Impact of Vegetation in Symmetries of Urban Environments. Symmetry, 10(12), 666.

SA-E14-12 Zweifel, S., Buquet, J., Caruso, L., Rousseau, D., & Raineteau, O. (2018). “FlashMap”-A Semi-Automatic Tool for Rapid and Accurate Spatial Analysis of Marker Expression in the Subventricular Zone. Scientific reports, 8(1), 1-13.

SA-E14-13 Zondaka, Z., Harjo, M., Khorram, M. S., Rasti, P., Tamm, T., & Kiefer, R. (2018). Polypyrrole/carbide-derived carbon composite in organic electrolyte: Characterization as a linear actuator. Reactive and Functional Polymers, 131, 414-419.

SA-E14-14 Douma, I., Rousseau, D., Sallit, R., Kodjikian, L., & Denis, P. (2018). Toward quantitative and reproducible clinical use of OCT-Angiography. PloS one, 13(7).

SA-E14-15 Gillard, N., Belin, E., & Chapeau-Blondeau, F. (2018). Enhancing qubit information with quantum thermal noise. Physica A: Statistical Mechanics and its Applications, 507, 219-230.

SA-E14-16 Giacalone, M., Rasti, P., Debs, N., Frindel, C., Cho, T. H., Grenier, E., & Rousseau, D. (2018). Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke. Medical image analysis, 50, 117-126.

SA-E14-17 Garbez, M., Symoneaux, R., Belin, É., Caraglio, Y., Chéné, Y., Dones, N., ... & Rousseau, D. (2018). Ornamental plants architectural characteristics in relation to visual sensory attributes: a new approach on the rose bush for objective evaluation of the visual quality.

SA-E14-18 Gillard, N., Belin, E., & Chapeau-Blondeau, F. (2017). Qubit state detection and enhancement by quantum thermal noise. Electronics Letters, 54(1), 38-39.

SA-E14-19 Murtin, C., Frindel, C., Rousseau, D., & Ito, K. (2018). Image processing for precise three-dimensional registration and stitching of thick high-resolution laser-scanning microscopy image stacks. Computers in biology and medicine, 92, 22-41.

SA-E14-20 Gillard, N., Belin, E., & Chapeau-Blondeau, F. (2017). Stochastic antiresonance in qubit phase estimation with quantum thermal noise. Physics Letters A, 381(32), 2621-2628.

SA-E14-21 Chambon, A., Boureau, T., Lardeux, F., & Saubion, F. (2018). Logical characterization of groups of data: a comparative study. Applied Intelligence, 48(8), 2284-2303.

SA-E14-22 Denancé, Nicolas, et al. "Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire." New Phytologist 219.1 (2018): 391-407.

SA-E14-23 Ahmad, A., Frindel, C., & Rousseau, D. (2020). Detecting differences of fluorescent markers distribution in single cell microscopy: textural or pointillist feature space?. Frontiers in Robotics and AI, 7, 39.

SA-E14-24 Dutagaci, H., Rasti, P., Galopin, G., & Rousseau, D. (2020). ROSE-X: an annotated data set for evaluation of 3D plant organ segmentation methods. Plant methods, 16(1), 1-14.

SA-E14-25 Alston, L., Mahieu-Williame, L., Hebert, M., Kantapareddy, P., Meyronet, D., Rousseau, D.,  Montcel, B. (2019). Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas. Biomedical optics express, 10(5), 2478-2492.

SA-E14-26 Sdika, M., Alston, L., Rousseau, D., Guyotat, J., Mahieu-Williame, L., & Montcel, B. (2019). Repetitive motion compensation for real time intraoperative video processing. Medical image analysis, 53, 1-10.

SA-E14-27 Alston, L., Rousseau, D., Hébert, M., Mahieu-Williame, L., & Montcel, B. (2018). Nonlinear relation between concentration and fluorescence emission of protoporphyrin IX in calibrated phantoms. Journal of biomedical optics, 23(9), 097002.

SA-E14-28 Courtial, Julia, et al. "Aldaulactone–an original phytotoxic secondary metabolite involved in the aggressiveness of Alternaria dauci on carrot." Frontiers in plant science 9 (2018): 502.

SA-E14-29 M. Garbez, E. Belin, Y. Chéné, N. Donès, G. Hunault, D. Relion, M. Sigogne, Symoneaux R., D. Rousseau, G. Galopin European Journal of Horticultural Science, 2020 (sous presse)

RA-E14-1  ElMasry, G., ElGamal, R., Mandour, N., Gou, P., Al-Rejaie, S., Belin, E., & Rousseau, D. (2020). Emerging Thermal Imaging Techniques for Seed Quality Evaluation: Principles and Applications. Food Research International, 109025.

RA-E14-2 ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., & Rousseau, D. (2019). Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An overview. Sensors, 19(5), 1090.

Ouvrages

Gestion et coordination de livres scientifiques/édition de livres scientifiques

Special issue on Low-Cost Sensors and Vectors for Plant Phenotyping

https://www.mdpi.com/journal/sensors/special_issues/sensors_vectors_plant_phenotyping

Interventions dans des conférences /congrès et séminaires de recherche

MA-E14-1  : Ordinal clustering of seed populations with data extracted from RGB imaging and X-ray tomography Hadhami Garbouge, Pierre Santagostini, Aurélie Charrier, Didier Demilly, David Rousseau UseR conference, 2019, Toulouse, France

MA-E14-2 : When spectro-imaging meets machine learning Clément Douarre, Laure Tougne, Carlos Crispim-Junior, Anthony Gelibert, David Rousseau Workshop on Machine Learning Assisted Image Formation, Jul 2019, Nice, France

MA-E14-3 : Revisiting SIFT for plant foliage in RGB images acquired on a turntable Helin Dutagaci, Etienne Belin, David Rousseau 7th International Workshop on Image Analysis Methods for the Plant Sciences, Jul 2019, Lyon, France

MA-E14-4A strategy for multimodal canopy images registration Clément Douarre, Carlos Crispim-Junior, Anthony Gelibert, David Rousseau, Laure Tougne 7th International Workshop on Image Analysis Methods in the Plant Sciences, Jul 2019, Lyon, France

MA-E14-5Deep learning based detection of cells in 3D light sheet fluorescence microscopy Ali Ahmad, Carole Frindel, Pejman Rasti, David Sarrut, David Rousseau Quantitative BioImaging Conference (QBI 2019), 2019, Rennes, France

MA-E14-6Graph encoding of multiscale structural networks from binary images with application to bio imaging

Nicolas Parisse, Aurélien Gourrier, Rachel Genthial, Delphine Débarre, Andrea Bassi, David Rousseau Computer Vision Problems in Plant Phenotyping (CVPPP 2018), Sep 2018, Newcastle, United Kingdom

MA-E14-7Perfusion MRI in stroke as a regional spatio-temporal texture Noelie Debs, Mathilde Giacalone, Pejman Rasti, Tae-Hee Cho, Carole Frindel, David Rousseau ISMRM 27th Annual Meeting & Exhibition, Jun 2018, Paris, France

MA-E14-8Synchrotron X-Ray Phase-Contrast Imaging To Simulate Diffusion Tensor MRI: Application to Tractograhy Timoté Jacquesson, Julie Bosc, Hugo Rositi, Marlène Wiart, Fabien Chauveau, Françoise Peyrin, David Rousseau, Carole Frindel Joint Annual Meeting ISMRM-ESMRMB 2018, 2018, Non spécifié, France

MA-E14-9Learning on Deep Network without the Hot Air by Scattering Transform Application to Weed Detection in Dense Culture Pejman Rasti, Ali Ahmad, Etienne Belin, David Rousseau 7th International Workshop on Image Analysis for Plant Science (IAMPS), 2018, Nottingham, United Kingdom

Articles publiés dans des actes de conférences/congrès

CP-E14-1Data augmentation techniques for deep learning: A tutorial David Rousseau, Sa Tasftaris ICASSP, 2019, Brighton, United Kingdom

CP-E14-2Data augmentation from RGB to chlorophyll fluorescence imaging Application to leaf segmentation of Arabidopsis thaliana from top view images Natalia Sapoukhina, Salma Samiei, Pejman Rasti, David Rousseau CVPR, 2019, Long Beach, États-Unis

Cp-E14-3Evaluation of the realism of an MRI simulator for stroke lesion prediction using convolutional neural network Noelie Debs, Meghane Decroocq, Tae-Hee Cho, David Rousseau, Carole Frindel MICCAI, 2019, Shenzhen, China

cp-E14-4 Digital image processing with quantum approaches Nicolas Gillard, Etienne Belin, François Chapeau-Blondeau 8th International Conference on Image and Signal Processing, ICISP 2018., 2018, Cherbourg, France. pp.360-369

cp-E14-5 Low-cost vision machine for high-throughput automated monitoring of heterotrophic seedling growth on wet paper support Pejman Rasti, Didier Demilly, Landry Benoit, Etienne Belin, Sylvie Ducournau, François Chapeau-Blondeau, David Rousseau Computer Vision Problems in Plant Phenotyping (CVPPP 2018), 2018, Newcastle, United Kingdom

cp-E14-6 An Image Processing Method Based on Features Selection for Crop Plants and Weeds Discrimination Using RGB Images Ali Ahmad, Rémy Guyonneau, Franck Mercier, Etienne Belin International Conference on Image and Signal Processing, ICISP 2018, 2018, Cherbourg, France. pp.3-10

cp-E14-7 On the value of graph-based segmentation for the analysis of structural networks in life sciences Denis Bujoreanu, Pejman Rasti, David Rousseau 2017 25th European Signal Processing Conference (EUSIPCO), 2017, Kos, Greece. pp.2664-2668

Outils et produits électroniques

Logiciels

David Rousseau in the framework of industrial partnership with ZEISS enabled to boost significantly the sells of microscope Z1 while speeding up registration of images of 100 Go from several hours to some minutes. Fiji plugin published in Computers in Medicine and Biology 2018.

Bases de données

David Rousseau, Pejman Rasti: Annotated data set on colon cancer (SA-E14-5)

David Rousseau, Pejman Rasti: Organisation of AgTech Data challenge, first national data challenge organized on AgTech (SA-E14-6)

Instruments et méthodologies

Prototypes

David Rousseau, Pejman Rasti: ANR LABCOM ESTIM  (2017-2020) networks of depth imaging camera for the monitoring of 300 000 seedling delivered to AREXOR

Platformes and observatoires

PHENOTIC Platform labeled BIOGENOUEST, IBISA member of national infrastructure PHENOME

Autres produits

Activités éditoriales

Management and coordination of scientific books/scientific book edition

Spécial issue on Low-Cost Sensors and Vectors for Plant Phenotyping https://www.mdpi.com/journal/sensors/special_issues/sensors_vectors_plant_phenotyping