Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Institut Agro Rennes-Angers Angers University   IRHS


Publications & COV


  • Lalanne D, Malabarba J, Ly Vu J, Hundertmark M, Delahaie J, Leprince, O, Buitink, J, Verdier J (2021) Medicago ABI3 splicing isoforms regulate the expression of different gene clusters to orchestrate seed maturation. Plants, 10(8), 1710;
  • Bianchetti G, Baron C, Carrillo A, Berardocco S, Marnet N, Wagner MH, Demilly D, Ducournau S, Manzanares-Dauleux MJ, Cahérec FL, Buitink J, Nesi N (2021) Dataset for the metabolic and physiological characterization of seeds from oilseed rape (Brassica napus L.) plants grown under single or combined effects of drought and clubroot pathogen Plasmodiophora brassicaeData Brief. Jul 3;37:107247. doi:10.1016/j.dib.2021.107247
  • Carrere S, Verdier J, Gamas P (2021) MtExpress, a comprehensive and curated RNAseq-based gene expression atlas for the model legume Medicago truncatula. Plant and Cell
  • Malabarba J, Windels D, Xu W, Verdier J (2021) Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress. Genes 12(3): 457
  • Lalanne D, Malabarba J, Ly Vu J, Hundertmark M, Delahaie J, Leprince O, Buitink J, Verdier J (2021) Medicago ABI3 splicing isoforms regulate the expression of different gene clusters to orchestrate seed maturation. Plants 10(8):1710.
  • ElMasry G, Mandour N, Ejeez H, Demilly D, Al-Rejaie S, Verdier J, Belin E, Rousseau D (2021) Multichannel imaging for monitoring chemical composition and germination capacity of cowpea. The Crop Journal, in press.
  • Chen Z, Ly Vu J, Ly Vu B, Buitink J, Leprince O, Verdier J (2021) Genome-wide association studies of seed performance traits in response to heat stress in uncover MIEL1 as a regulator of seed germination plasticity. Frontiers in Plant Science 04 June 2021
  • Cartelier K, Aimé, D, Ly Vu J, Combes‐Soia L, Labas V, Prosperi J‐M, Buitink J, Gallardo K, Le Signor C.(2021) Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatulaThe Plant Journal,106(5):1298-1311
  • Bizouerne E, Buitink J, Ly Vu B, Ly Vu J, Esteban E, Asha A, Provart N, Verdier J, Leprince O (2021) Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC Plant Biology 21:124.
  • Chen Z, Ly Vu B, Leprince O, Verdier J (2021) RNA sequencing data for heat stress response in isolated Medicago truncatula seed tissues. Data in Brief 35: 106726.
  • Bizouerne E, Ly Vu B, Ly Vu J, Verdier J, Buitink J, Leprince O (2021) Dataset for transcriptome and physiological response of mature tomato seed tissues to light and heat during fruit ripening. Data in Brief 34: 106671.
  • Chen Z, Lancon-Verdier V, Le Signor C, She Y-M, Kang Y, Verdier J (2021) Genome-wide association study identified candidate genes for seed size and seed composition improvement in M. truncatulaScientific Reports 11, 4224.


  • Windels D, Dang TT, Chen Z, Verdier J (2020) Snapshot of epigenetic regulation in legumes, Legume Science 1: leg3.60.
  • Samiei S, Rasti P, Ly Vu J, Buitink J, Rousseau D (2020) Deep learning-based detection of seedling development. Plant Methods 16, 103.
  • Zinsmeister J, Berriri S, Basso DP, Ly‐Vu B, Dang T‐T, Lalanne D, da Silva EAA, Leprince, Buitink J (2020) The seed‐specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signaling. Plant Cell and Environment, 43(10): 2508-2522
  • Ribeiro B, Lacchini E, Bicalho K, Mertens J, Arendt P, Vanden Bossche R, Calegario G, Gryffroy L, Ceulemans E, Buitink J, Goossens A, Pollier J (2020) A seed-specific regulator of triterpene saponin biosynthesis in Medicago truncatula. The Plant Cell 32:2020-2042
  • Renzi JP, Duchoslav M, Brus J, Hradilová I, Pechanec V, Václavek T, Machalová J, Hron K, Verdier J, Smýkal P (2020) Physical dormancy release in Medicago truncatula seeds is related to environmental variations. Plants 9:503
  • Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, Seo M, Leprince O, Buitink J (2020) A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytologist, 225: 284–296,
  • Zinsmeister J, Leprince O, Buitink J (2020) Molecular and environmental factors regulating seed longevity. Biochemical Journal 477: 305–323,
  • Buitink J, Douzals J-P, Duliège E, Lebeau F, Marchi M. Quelles technologies pour le déploiement du biocontrôle ? dans BIOCONTRÔLE. Éléments pour une protection agroécologique des cultures, chap 22. Éditions Quae


  • Verdier J, Leprince O, Buitink J (2019) A physiological perspective of late maturation processes and establishment of seed quality in Medicago truncatula seeds. In The Model Legume Medicago truncatula, F de Bruijn (ed), John Wiley & Sons, pp45-55
  • Lonardi S, Muñoz‐Amatriaín M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo M, Alhakami H, Ounit R, Hasan A, Verdier J, Roberts PA, Santos JRP, Ndeve A, Doležel J, Vrána J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The genome of cowpea (Vigna unguiculata L. Walp). Plant Journal 98: 767-782
  • Marques A, Costa M-CD, Chathuri U, Jonkheer E, Zhao T, Schijlen E, Derks M, Nijveen H, Marcet-Houben M, Julca I, Delahaie J, Schranz ME, Gabaldon T, Pelletier S, Leprince O, Ligterink W, Buitink J, Hilhorst HWM, Farrant JM (2019) A blueprint of seed desiccation sensitivity in the genome of Castanospermum australe. BioRxiv doi:
  • ElMasry G, Mandour N, Wagner MH, Demilly D, Verdier J, Belin E, Rousseau D (2019) Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 15:24.


  • Pecrix Y, Staton S, Sallet E, Lelandais-Brière C, Moreau S, Carrere S, Blein T, Jardinaud M-F, Latrasse D, Zouine M, Zahm M, Kreplak J, Mayjonade B, Satgé C, Perez M, Cauet S, Marande W, Chantry-Darmon C, Lopez-Roques C, Bouchez O, Bérard A, Debellé F, Muños S, Bendahmane A, Bergès H, Niebel A, Buitink J, Frugier F, Benhamed M, Crespi M, Gouzy J, Gamas P (2018) Whole-genome landscape of Medicago truncatula symbiotic genes, Nature Plants 4(12):1017-1025.
  • Buitink J, Leprince O (2018) “Letters to the twenty-first century botanist. Second series: “What is a seed? – 2. Regulation of desiccation tolerance and longevity in developing seeds: two faces of the same coin”. Botany Letters
  • Puntel Basso D, Akemi Hoshino-Bezerra A, Pereira Sartori MM, Buitink J, Leprince O, da Silva EAA (2018) Late seed maturation improves the preservation of seedling emergence during storage in soybean. Journal of Seed Research, doi:10.1590/2317-1545v40n218176


  • Pereira Lima JJ, Buitink J, Lalanne D, Rossi RF, Pelletier S, da Silva EAA, et al. (2017) Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS ONE 12(7): e0180282.
  • Pazhamala LT, Purohit S, Saxena RK, Garg V, Krishnamurthy L, Verdier J, Varshney RK (2017) Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. Journal of Experimental Botany, 68 (8): 2037-2054.
  • Le Signor C, Aime D, Bordat A, Belghazi M, Labas V, Gouzy J, Young ND, Prosperi J-M, Leprince O, Thompson R, Buitink J,  Burstin J, Gallardo-Guerrero K (2017) Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytologist 214 (4) : 1597-1613.


  • Zinsmeister J, Terrasson E, Chatelain E, Vandecasteele C, Lalanne D, Ly Vu B, Dubois-Laurent C, Geoffriau E, le Signor C, Dalmais M, vom Dorp K, Dörmann P, Gallardo K, Bendahmane A, Buitink J, Leprince O (2016) ABI5 plays a major role in regulating seed maturation and longevity in legumes. The Plant Cell 28: 2735-2754.  
  • Bandyopadhyay K, Uluçay O, Şakiroğlu M, Udvardi M, Verdier J (2016) Analysis of large seeds from three different Medicago truncatula ecotypes reveals a potential role of hormonal balance in final size determination of legume grains. International Journal of Molecular Sciences 17 (9): 1472.
  • Kang Y, Li M, Sinharoy S, Verdier J (2016) A snapshot of functional genetic studies in Medicago truncatula. Frontiers in Plant Science 7: 1-22.
  • Li P, Dong Q, Ge S, He X, Verdier J, Zhao J (2016) Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotechnology Journal 14 (7): 1604-1618.
  • Yao S, Jiang C, Huang Z, Torres-Jerez I, Chang J, Zhang H, Udvardi M, Liu R, Verdier J (2016) The Vigna unguiculata Gene Expression Atlas (VuGEA) from de novo assembly and quantification of RNA-seq data provides insights into seed maturation mechanisms. Plant Journal 88 (2): 318-327. 
  • Leprince O, Pellizzaro A, Berriri S, Buitink J (2016) Late seed maturation: drying without dying. Journal of Experimental Botany 68: 827–841. doi: 10.1093/jxb/erw363
  • Costa MCD , Farrant JM, Oliver MJ, Ligterink W, Buitink J, Hilhorst HMW (2016) Key genes involved in desiccation tolerance and dormancy across life forms, Plant Science 251: 162–168.


  • Righetti K, Ly Vu J, Pelletier S, Ly Vu B, Glaab E, Lalanne D, Pasha A, Patel RV, Provart N, Verdier J, Leprince O, Buitink J (2015) Inference of longevity-related genes from a robust co-expression network of seed maturation identifies new regulators linking seed storability to biotic defense-related pathways. The Plant Cell 27: 2692-2708
  • Leprince O, Buitink J (2015) Introduction to desiccation biology: from old borders to new frontiers. Planta, 242, 369-378
  • Gallardo K, D'Erfurth I, Le Signor C, Vernoud V, Aubert G, Buitink J, Gouzy J, Prosperi J-M, Burstin J, Thompson R (2015). Use of translational genomics to identify genes important for legume seed development. Legume Perspectives. 8: 12-14.
  • Terrasson E, Darrasse A, Righetti K, Buitink J, Lalanne D, Ly Vu B, Pelletier S, Bolingue W, Jacques M-A, Leprince O (2015) Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads. Journal of Exp Botany 66 (13): 3737-3752.
  • Costa MCD, Nijveen H, Ligterink W, Buitink J, Hilhorst, HWM (2015) Time-series analysis of the transcriptome of the re-establishment of desiccation tolerance by ABA in germinated Arabidopsis thaliana seeds. Genomics Data, 06/2015.
  • Duc G, Anton M, Baranger A, Biarnes V, Buitink J, Carrouée B, Georget M, Jeuffroy M-H, Lessire M, Magrini M-B, Pinochet X, Walrand S (2015) Pertes alimentaires dans la filière protéagineuse. Innovations Agronomiques 48: 127-141.
  • Costa MCD, Righetti K, Nijveen H, Yazdanpanah F, Ligterink W, Buitink J, Hilhorst, HWM (2015) A gene co-expression network predicts functional genes controlling the re-establishment of desiccation-tolerance in germinated Arabidopsis thaliana seeds. Planta, 242: 435-449.


  • Terrasson E, Buitink J, Righetti K, Ly Vu B, Pelletier S, Zinsmeister J, Lalanne D and Leprince O (2013) An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. Frontiers in Plant Science 11 December 2013,  doi: 10.3389/fpls.2013.00497.
  • Zuber H, Poignavent G, Le Signor C, Aimé D, Vieren E, Tadla C, Lugan , Belghazi M, Labas V, Santoni, A-L, Wipf D, Buitink J, Avice J-C, Salon C, Gallardo K (2013) Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. The Plant Journal 76(6):982-96.
  • Delahaie, J, Hundertmark, M, Bove, J, Leprince, O,  Rogniaux, H and Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. Journal of Experimental Botany 64(14):4559-73.
  • Verdier, J, Lalanne, D, Pelletier, S, Torres-Jerez, I, Righetti, K, Bandyopadhyay, K, Leprince, O, Chatelain, E, Ly Vu, B, Gouzy, J, Gamas, P, Udvardi, MK and Buitink J (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiology 163: 757-774.
  • Chatelain E, Satour P, Laugier E, Ly Vu B, Payet N, Rey P, Montrichard F (2013) Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences USA110(9): 3633-8.


  • Chatelain E, Le Gall S, Hundertmark M, Leprince O, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J. (2012) Temporal profiling of the heat stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell and Environment 35: 1440-1455
  • D’Erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, Darchy B, Lherminier J, Bourion V, Bouteiller N, Bendahmane A, Buitink J, Prosperi JM, Thompson R, Burstin J, and Gallardo K. (2012) A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytolologist 196(3):738-51


  • Hundertmark M, Buitink J, Leprince O, Hincha DK (2011) Reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research 21: 165-173
  • Vandecasteele, C, Teulat-Merah, B, Morère-Le Paven, M-C, Leprince, O, Ly Vu, B, Viau, L, Ledroit, L, Pelletier, S, Payet, N, Satour, P, Lebras, C, Gallardo, K, Huguet, T, Limami, A, Prosperi, J-M, Buitink, J (2011) QTL analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula, Plant Cell and Environment 34, 1473-1487.


  • Boucher V., Buitink J., Lin X., Boudet J., Hoekstra F.A., Hundertmark M., Renard D., Leprince 0. (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell and Environment 33, 418-430.
  • Bolingue W., Rosnoblet C., Ly Vu B., Leprince O., Aubry C., Buitink J. (2010) The MtSNF4b subunit of the sucrose non-fermenting-related kinase complex connects after-ripening and constitutive defense responses in seeds of Medicago truncatula. Plant Journal 61, 792-803.
  • Leprince O., Buitink J. (2010) Desiccation tolerance: From genomics to the field. Plant Science 179: 554-564.
  • Bolingue W., Ly Vu B., Leprince O., Buitink J. (2010) Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Science Research 20, 97-107.
  • Tunnacliffe A., Hincha D.K., Leprince O, Macherel D. (2010)  LEA proteins: versatility of forms and function. Lubzens, E., Cerda, J. and M. Clark. Eds. Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, Springer, pp. 91-108.
  • Hilhorst, H., Finch-Savage, WE, Leubner, G, Buitink, J, Bolingue W. (2010) Dormancy in Plant Seeds. Lubzens, E., Cerda, J. and M. Clark. Eds. Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, Springer, pp 43-67.