Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Oniris

Home page

PhD thesis of Hanka Turonova (2012-2015)

Hanka Turonova
Adaptation of Campylobacter jejuni to food environment (O. Tresse)


C. jejuni has been continuously reported as the major cause of foodborne bacterial enteritis in developed countries. Despite its fastidious growth requirements and relatively small genome, C. jejuni has developed strategies to overcome stress during food processing without permanent loss of viability and virulence. Unlike other pathogens, Campylobacter lacks the sigma factor RpoS responsible for global stress response and switch to stationary phase. Therefore, the first part of this work was focused on the factors involved in C. jejuni growth by comparing log and stationary phases of C. jejuni. In particular, we investigated the possible role of the regulator CosR. In the second part, we explored the biofilm development of C. jejuni as a potential mechanism of persistence in the food environment. The biofilm spatial distribution and organization of two well-known strains were analyzed. The biofilm architecture differed between the two strains ranging from finger-like structure with voids to compact multilayer-like structure. Exposure of cells to oxygen enriched conditions prior to and during biofilm formation enhanced biofilm development. The role of CosR in biofilm maturation was demonstrated using a cosR overexpressing transformant. Finally, a biofilm matrix of the two test strains was partly identified. Altogether, these data indicate that C. jejuni biofilms could serve as a protective niche facilitating the survival of C. jejuni in the environment.

Valorisation :

  • Turonova, H., N. Haddad, M. Hernould, D. Chevret, J. Pazlarova and O. Tresse 2017. Profiling of Campylobacter jejuni proteome in exponential and stationary phase of growth. Frontiers in Microbiology 8(913). Ranking du JCR: Q2.
  • Bronnec, V., H. Turonova, A. Bouju, S. Cruveiller, R. Rodrigues, K. Demnerova, O. Tresse, N. Haddad and M. Zagorec 2016. Adhesion, biofilm formation, and genomic features of Campylobacter jejuni Bf, an atypical strain able to grow under aerobic conditions. Frontiers in Microbiology 7: 1-14. Ranking du JCR: Q1.
  • Turonova, H., T. R. Neu, P. Ulbrich, J. Pazlarova and O. Tresse 2016. The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis. Biofouling 32(5): 597-608. Ranking du JCR: Q1.
  • Turonova, H., R. Briandet, R. Rodrigues, M. Hernould, N. Hayek, A. Stintzi, J. Pazlarova and O. Tresse 2015. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions. Frontiers in Microbiology 6: 1-11. Ranking du JCR: Q1.
Campylobacter infections

Campylobacter infections

New publication of Secalim
Read more