Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Oniris

Home page

PhD thesis of Teresa Pilchova

Teresa Pilchova
Biofilm, virulence and control strategies of Listeria monocytogenes (O. Tresse)

Biofilm, virulence and control strategies of Listeria monocytogenes
Growth of the foodborne pathogen, Listeria monocytogenes, to high numbers in ready-to-eat food products importantly increases the infection risk of immunocompromised consumers. As it is very difficult to avoid cross-contamintation during processing and formation of bacterial biofilms, this study focused on the initial steps of biofilm formation and biofilm stucture, the relationship between virulence genes involved in the adhesion to inert surfaces and virulence and impact of Carnobacterium strains on Listeria monocytogenes infection using in vitro cell culture method.
In the first part we observed an initial 2-D biofilm structure including cell cluster formation with attached cells side-by-side, branch elongation by cell division, open geometric forms connected through branches and honeycomb-like structure which was reached with three out of four tested strains. Only EGD-e was not able to enter to the second step impairing the formation of an honeycomb-like structure and mature biofilm. A temperature of 20°C over the whole study was used to mimic the environment in food processing plants. Under pH 5, the impairment of the initial biofilm structure for all strains was observed which could constitute a way of biofilm development prevention.
seafood isolates for their adhesion abilities and in vivo and in vitro virulence level. Focusing on two low-virulent strains (EU 2153 and EU 2154) we showed that they have the highest adhesion rate among strains. We succesfully amplified and sequenced prfA and inlA for these two strains and found one nonsense mutation of inlA in EU 2153 and one point mutation in EU 2154 explaining their low virulence and invasion rate.
infection using in vitro HT29 and HT29-MTX models. All strains tested were able to reduce the epithelial cells infection caused by L. monocytogenes Scott A. Depth analysis with various pretreatments of Carnobacteria strains indicated the influence of bacteriocins as well as the nonactive mechanism of cell monolayers protection suggesting the possible use of protective bacteria to reduce L. monocytogenes infection.


  • Pilchová, T., M. Hernould, H. Prévost, K. Demnerová, J. Pazlarová and O. Tresse 2014. Influence of food processing environments on structure initiation of static biofilm of Listeria monocytogenes. Food Control 35(1): 366-372. Ranking du JCR: Q1.
  • Pilchová, T., M.-F. Pilet, J.-M. Cappelier, J. Pazlarová and O. Tresse 2016. Protective effect of Carnobacterium spp. against Listeria monocytogenes during host cell invasion using in vitro HT29 model. Frontiers in Cellular and Infection Microbiology 6(88): 1-9. Ranking du JCR: Q1.